Trójkąt prostokątny o przyprostokątnych długości 9 cm i 12 cm obraca się wokół prostej zawierającej krótszą podstawę. Oblicz pole powierzchni otrzymanej bryły
Przedmiot: Matematyka
Dodane: 28.10.2023 o 11:29

Streszczenie:
Obliczone pole powierzchni bryły wynosi 189π cm^2, zgodnie z zasadą Cavalieri'o. Zasada Cavalieriego mówi, że jeśli dwie bryły posiadają taką samą wysokość i każdy przekrój równoległy do podstawy jednej bryły jest podobny do przekroju równoległego do podstawy drugiej bryły, to objętości tych brył są sobie równe?✅
Aby obliczyć pole powierzchni otrzymanej bryły, która powstaje przez obrót trójkąta prostokątnego wokół prostej zawierającej krótszą przyprostokątną, możemy skorzystać z zasady Cavalieriego.
Zasada Cavalieriego mówi, że jeśli dwie bryły posiadają taką samą wysokość i każdy przekrój równoległy do podstawy jednej bryły jest podobny do przekroju równoległego do podstawy drugiej bryły, to objętości tych brył są sobie równe.
W naszym przypadku, jeśli obrócimy trójkąt prostokątny wokół prostej zawierającej krótszą przyprostokątną, to otrzymamy stożek. Aby użyć zasady Cavalieriego, musimy znaleźć wysokość stożka oraz przekrój równoległy do podstawy, który powstaje przez obrót trójkąta.
Wysokość stożka będzie równa długości dłuższej przyprostokątnej trójkąta prostokątnego, czyli 12 cm. Aby znaleźć przekrój równoległy do podstawy, musimy znaleźć długość okręgu powstającego przez obrót krótszej przyprostokątnej. Długość okręgu można obliczyć ze wzoru: C = 2πr, gdzie C to obwód okręgu, a r to promień.
W naszym przypadku, promień będzie równy długości krótszej przyprostokątnej, czyli 9 cm. Obwód okręgu wynosi więc C = 2π * 9 = 18π cm.
Teraz musimy obliczyć pole powierzchni stożka, które wynosi: P = πr^2 + πrl, gdzie P to pole powierzchni, r to promień podstawy, a l to tworzący stożka.
Podstawiając odpowiednie wartości otrzymujemy P = π * 9^2 + π * 9 * 12 = 81π + 108π = 189π cm^2.
Ostatecznie, pole powierzchni otrzymanej bryły wynosi 189π cm^2.
Ocena nauczyciela:
Ta praca została zatwierdzona przez naszego nauczyciela: 12.06.2024 o 10:22
O nauczycielu: Nauczyciel - Krzysztof K.
Od 15 lat pracuję w liceum ogólnokształcącym — prowadzę przygotowania maturalne i wspieram uczniów młodszych przed egzaminem ósmoklasisty. Uczę logicznego myślenia, klarownego planu i skutecznej argumentacji opartej na lekturach i tekstach nieliterackich. Na zajęciach panuje porządek i spokój, dzięki czemu łatwiej skupić się na meritum. Moi uczniowie cenią konkret, przykłady oraz powtarzalne schematy, które dają wyniki.
Bardzo dobrze poradziłeś sobie z obliczeniami i zastosowaniem zasady Cavalieriego do rozwiązania tego zadania.
Komentarze naszych użytkowników:
Oceń:
Zaloguj się aby ocenić pracę.
Zaloguj się